5.3 Yield and Crazing

Small Deformations in the Solid State

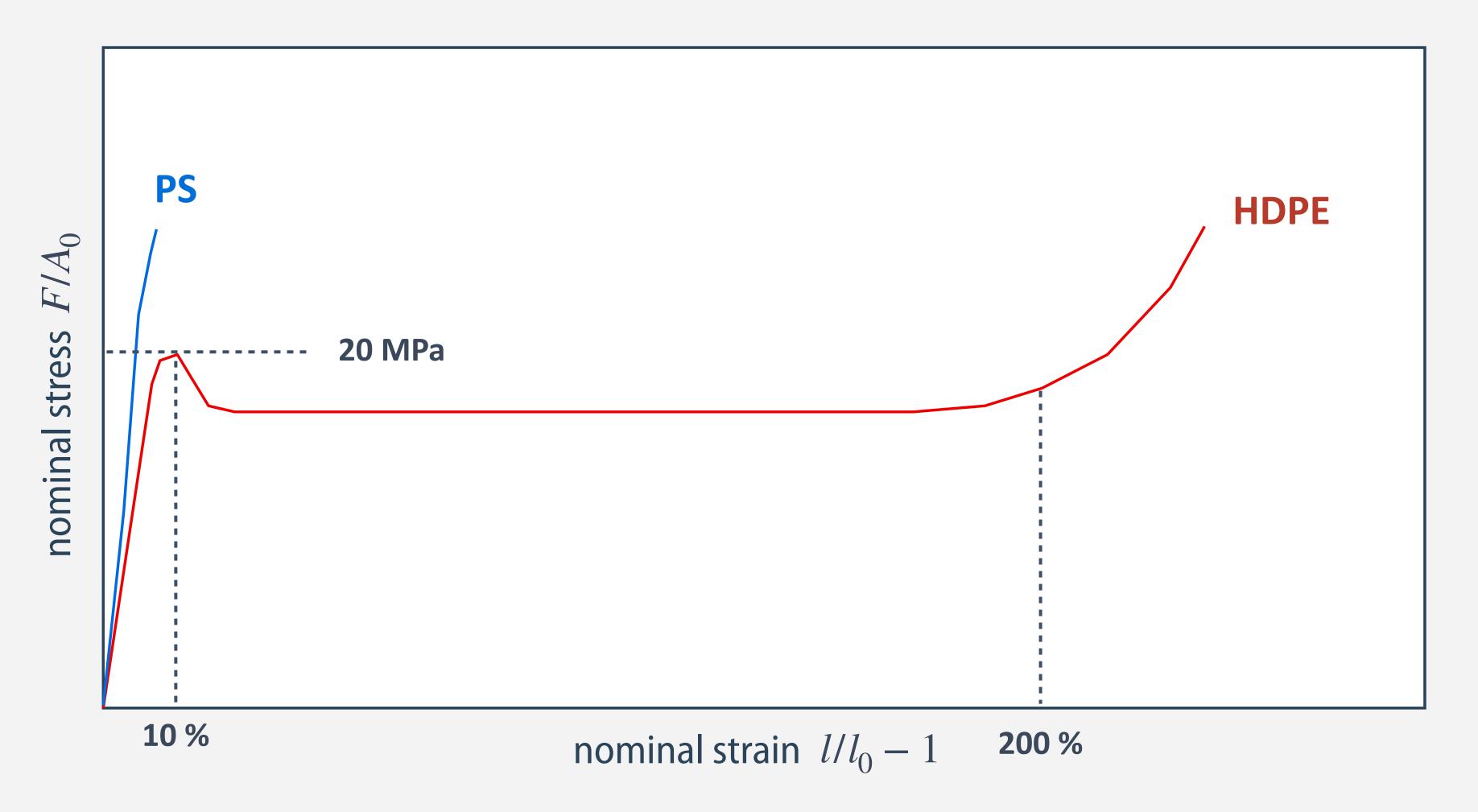
- ullet in the "rigid" solid state ($T < T_g$, $T < T_m$), conformational changes are restricted
- for small deformations, elasticity is dominated by intermolecular forces (for large deformations (or stresses), this is not valid anymore)

what is happening here, if we pull very strongly?



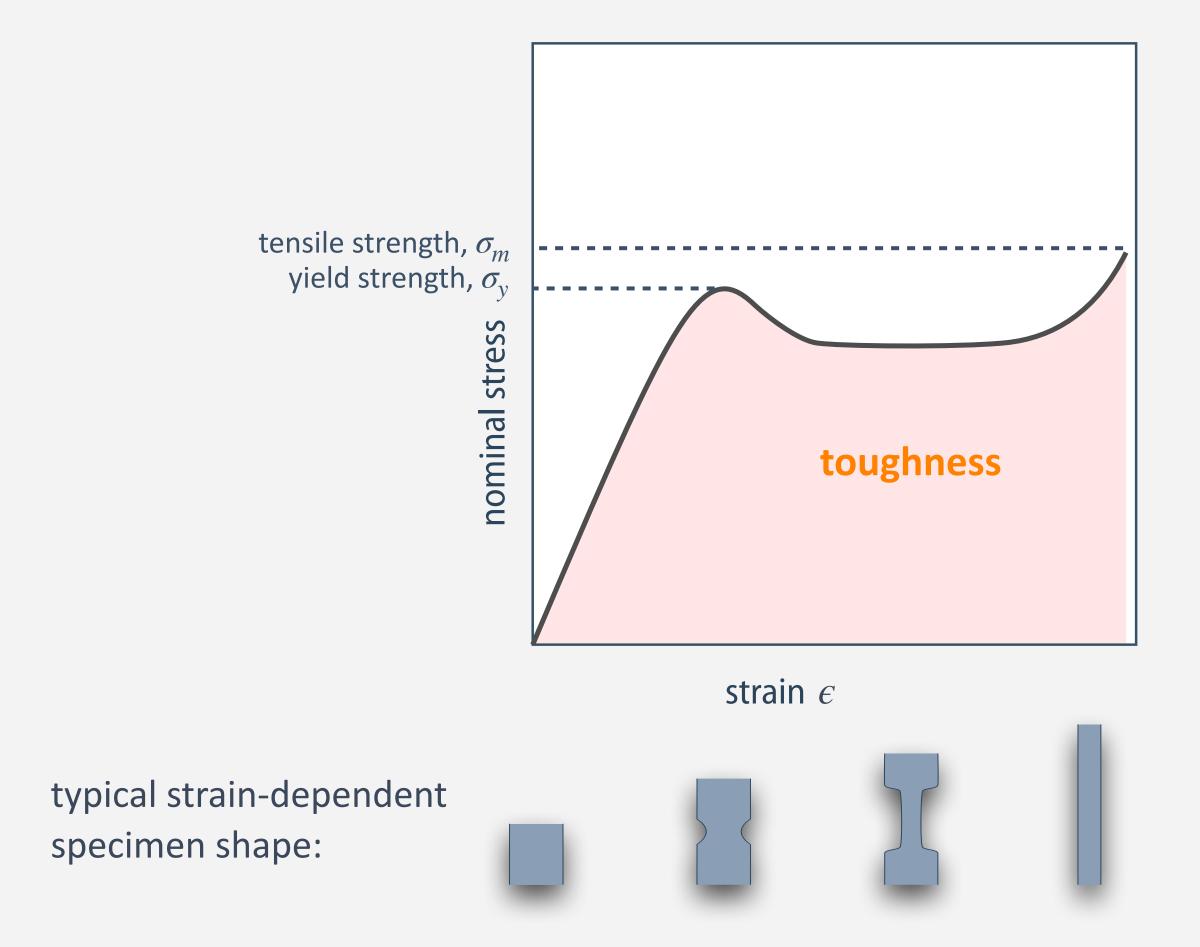
Brittle vs. Ductile Behavior

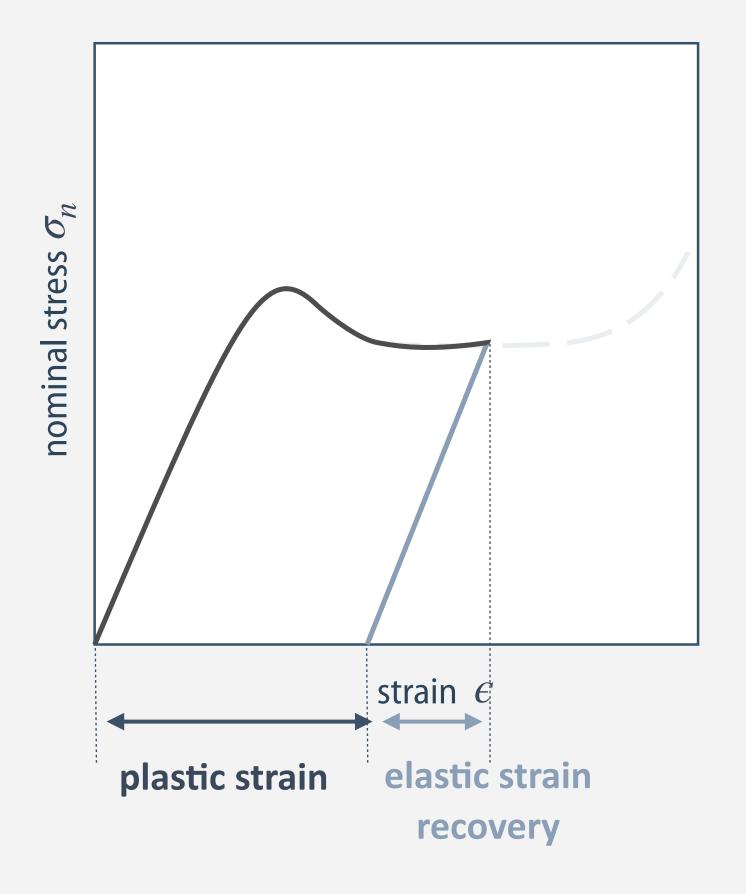
- polymers are generally considered as "plastic", i.e. capable to undergo large "irreversible" deformations in the solid state (glassy or semicrystalline); for some that is more true, but for others to lesser extent...
- typical tensile curves of a brittle (PS) and a ductile (HDPE) material



Characterisation of Plasticity

• large strain behavior characterised by yield strength, tensile strength, and toughness

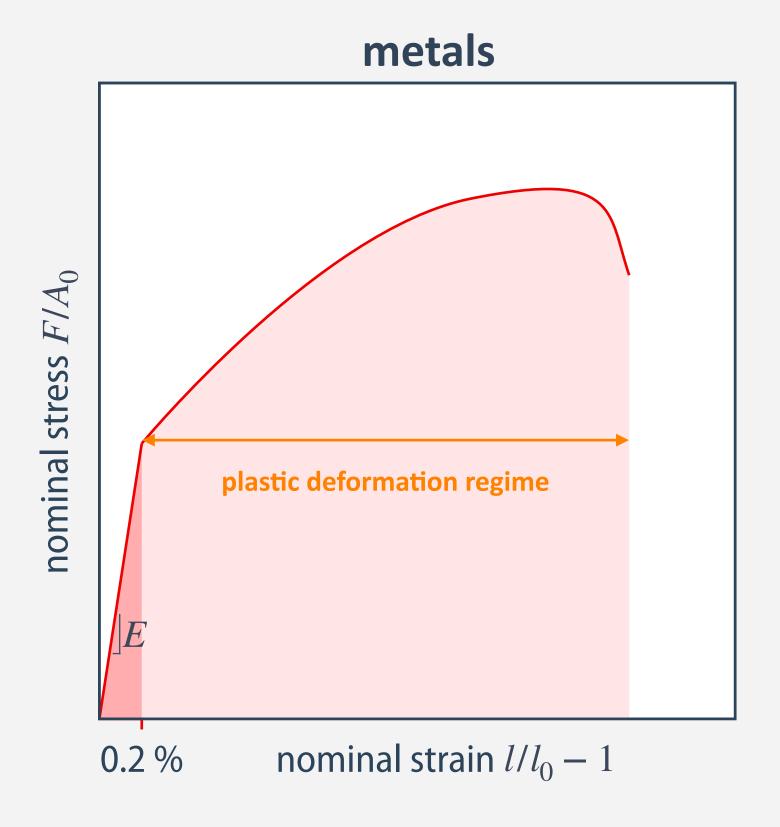




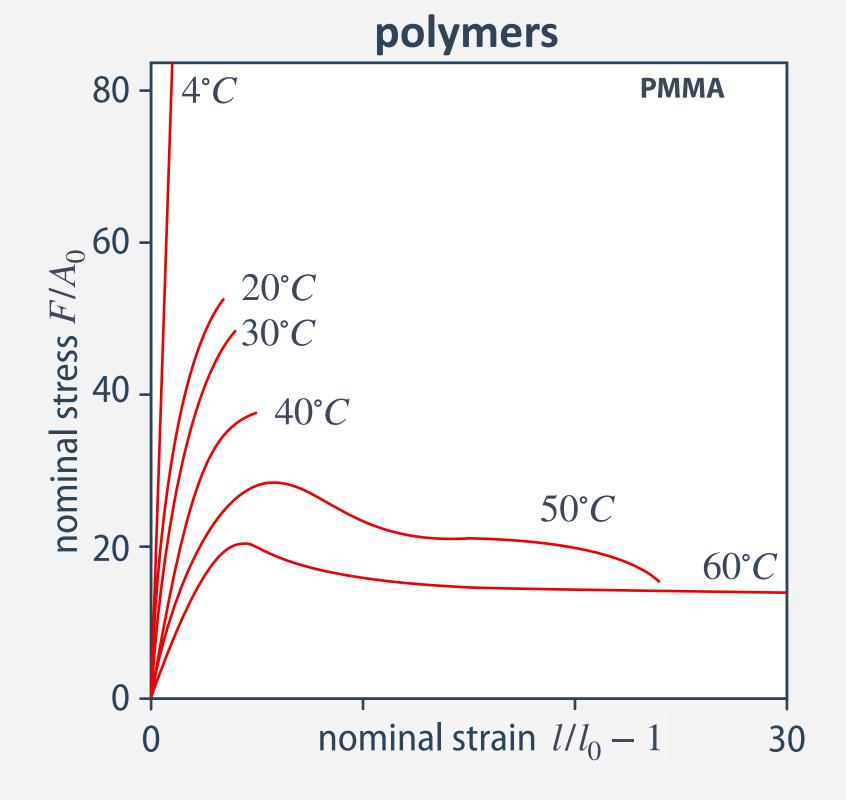
- for sufficiently ductile materials, "onset" of plastic deformation is indicated by necking
- stress release often does not return the specimen into it's original shape

Metals vs. Polymers

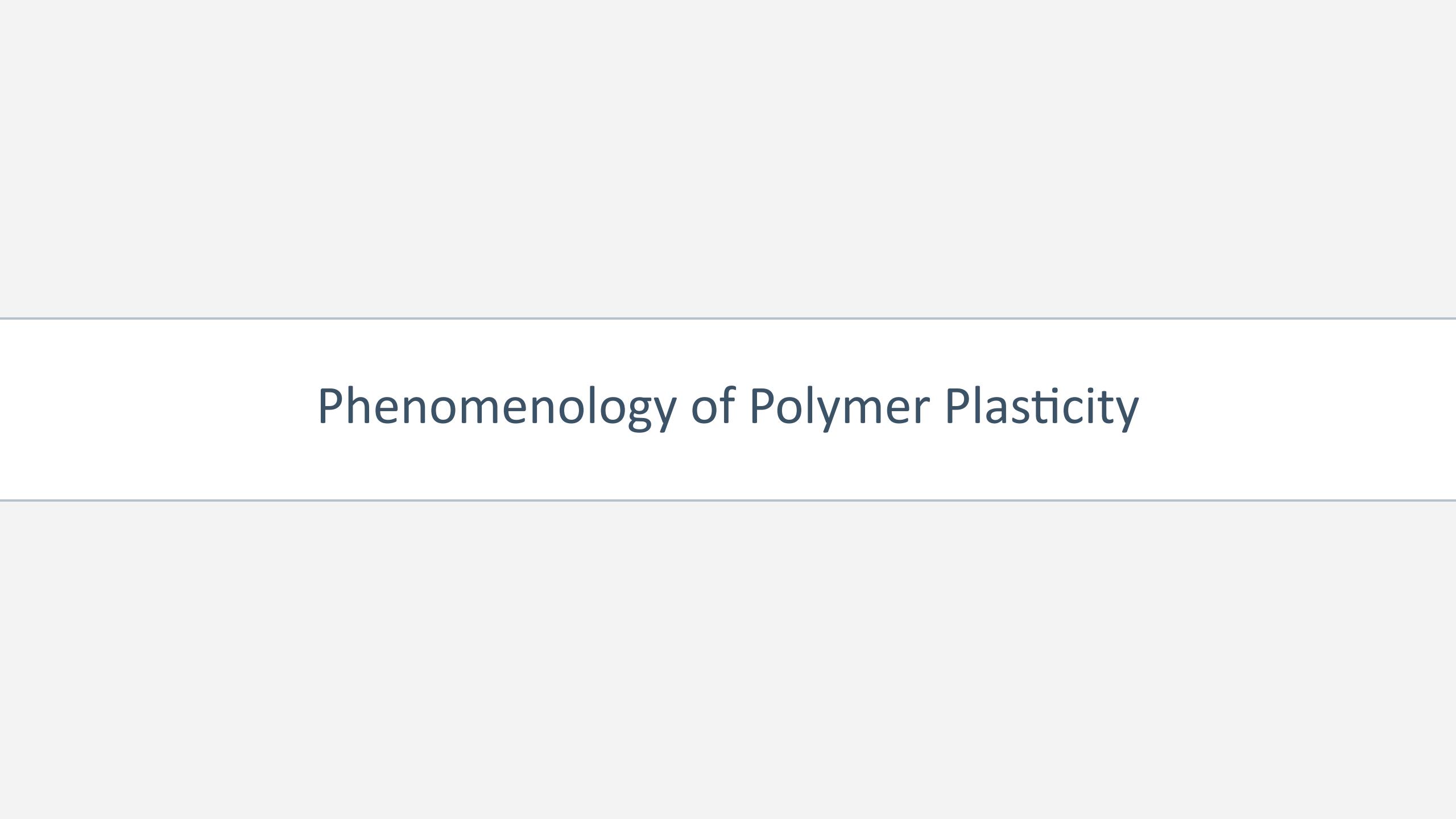
• metals are also capable of plastic deformation, but with important differences



- clear distinction between elastic (reversible) and plastic (irreversible) deformation
- at operating temperature: little influence of T and $d\epsilon/dt$; little heat dissipation
- often ill-defined necking

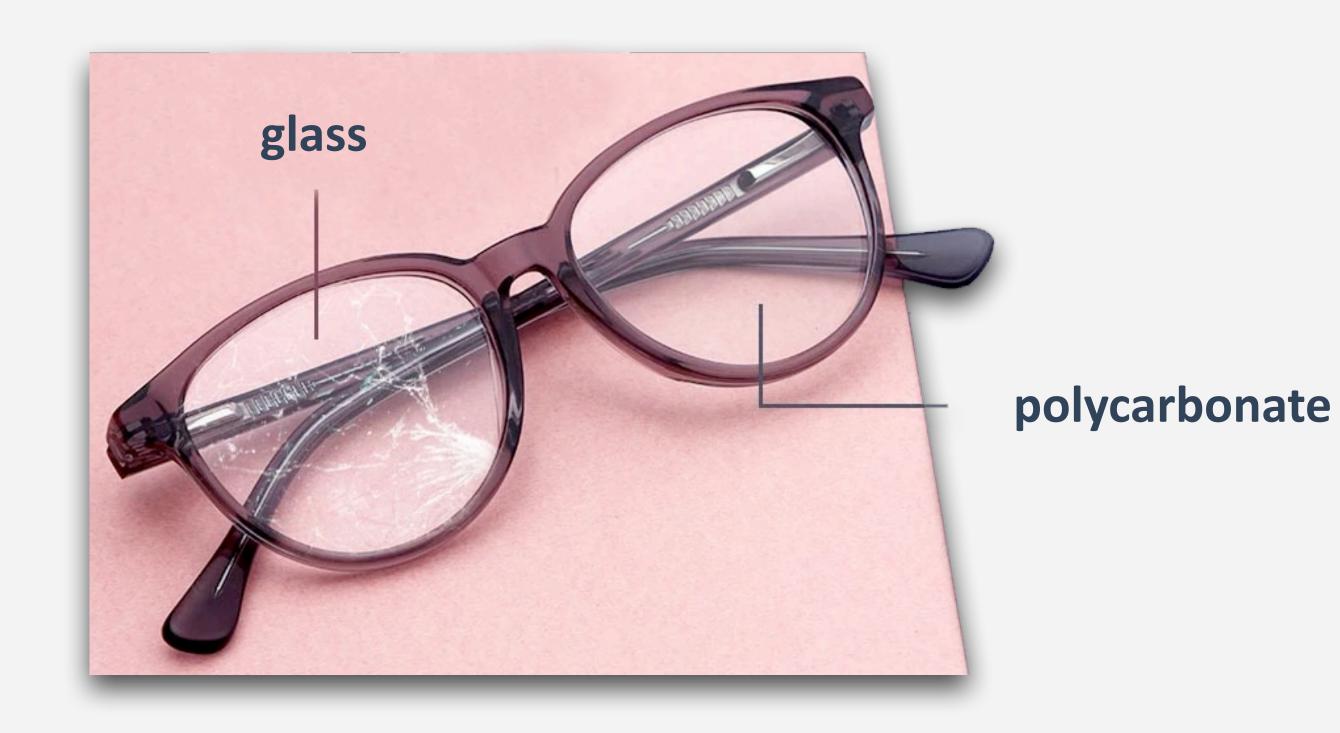


- even very large deformations (up to 100 %) can be recovered, e.g. by heat treatment above $T_{\it g}$
- at operating temperature: strong influence of T and de/dt; strong heat dissipation
- often well-defined necking at a given strain rate



Importance of Plasticity

plastic deformation is a highly dissipative process

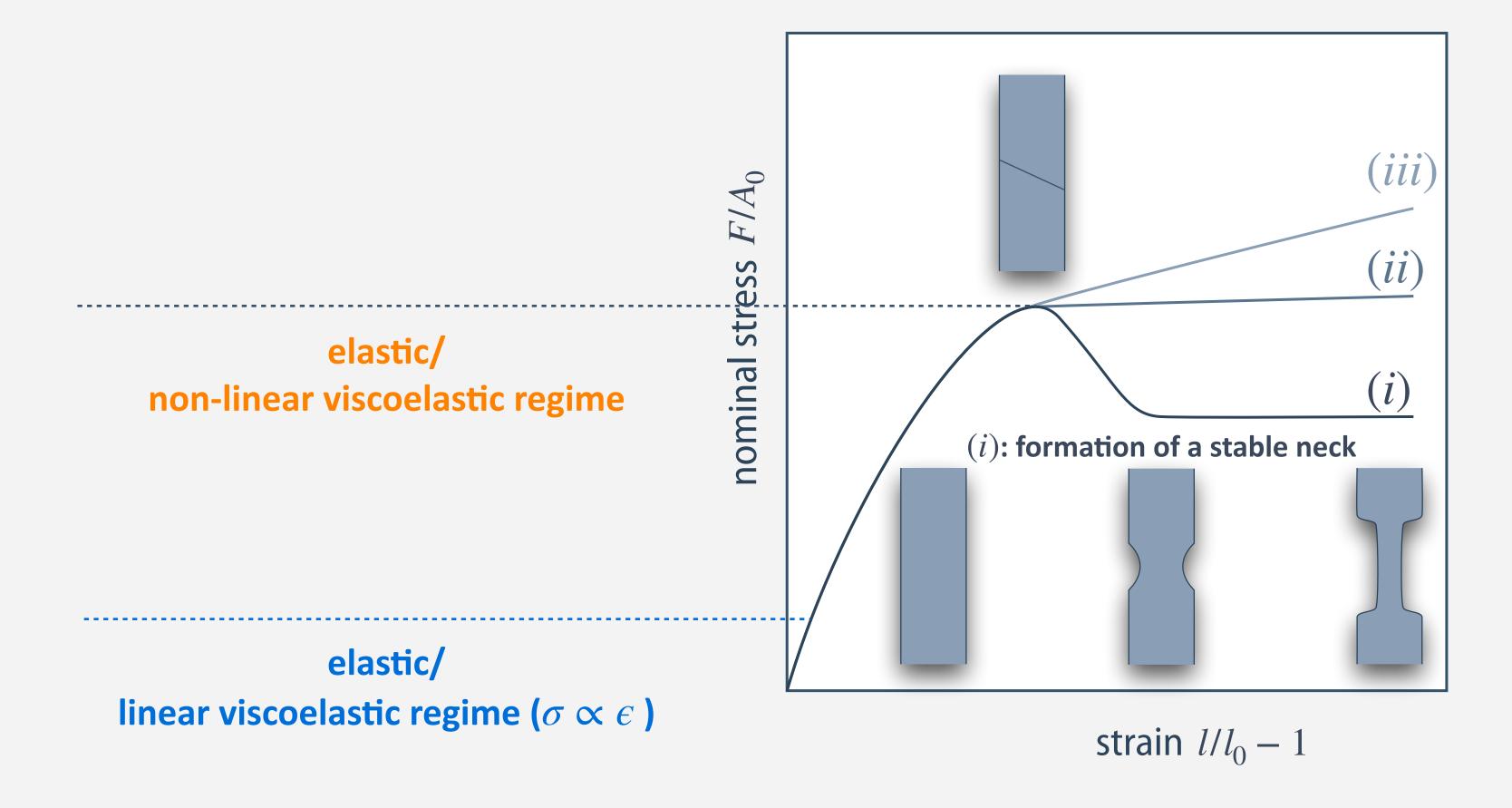


dissipated energy =
$$\int \sigma(\epsilon) d\epsilon$$

• good crack resistance of ductile materials (it takes a lot of energy to advance a crack)

Yield Strength

ullet one way of describing plastic deformation is via the maximum in stress, $\sigma_{\!\scriptscriptstyle y}$



• at a constant strain rate, the yield point (cases (i) and (ii)) can be defined as: $\frac{d\sigma}{d\varepsilon}\bigg|_{\sigma_y} = \frac{d\sigma}{d\lambda}\bigg|_{\sigma_y} = 0$

Geometric Considerations of Necking

Considère construction: plot of true stress versus nominal strain

true stress:
$$\sigma_r = \frac{f}{A}$$

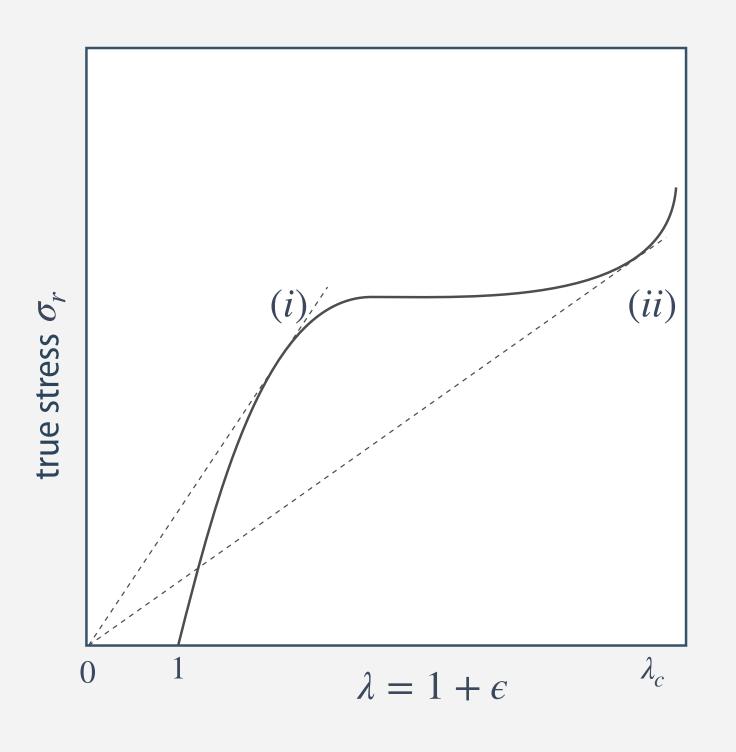
true stress:
$$\sigma_r = \frac{f}{A}$$
 nominal stress: $\sigma_n = \frac{f}{A_0} = \frac{\sigma_r}{1 + \epsilon}$

at iso-volumetric conditions:

$$Al = A_0 l_0 \quad \Rightarrow \quad A = A_0 \frac{l_0}{l} = \frac{A_0}{\lambda}$$

$$\sigma_r = \frac{f}{A} = \frac{A_0 \sigma_n}{A_0 \lambda^{-1}} = \lambda \sigma_n \quad \Rightarrow \quad \frac{d\sigma_n}{d\lambda} = \frac{d}{d\lambda} \left(\frac{\sigma_r}{\lambda}\right) = \frac{1}{\lambda} \frac{d\sigma_r}{d\lambda} - \frac{\sigma_r}{\lambda^2}$$

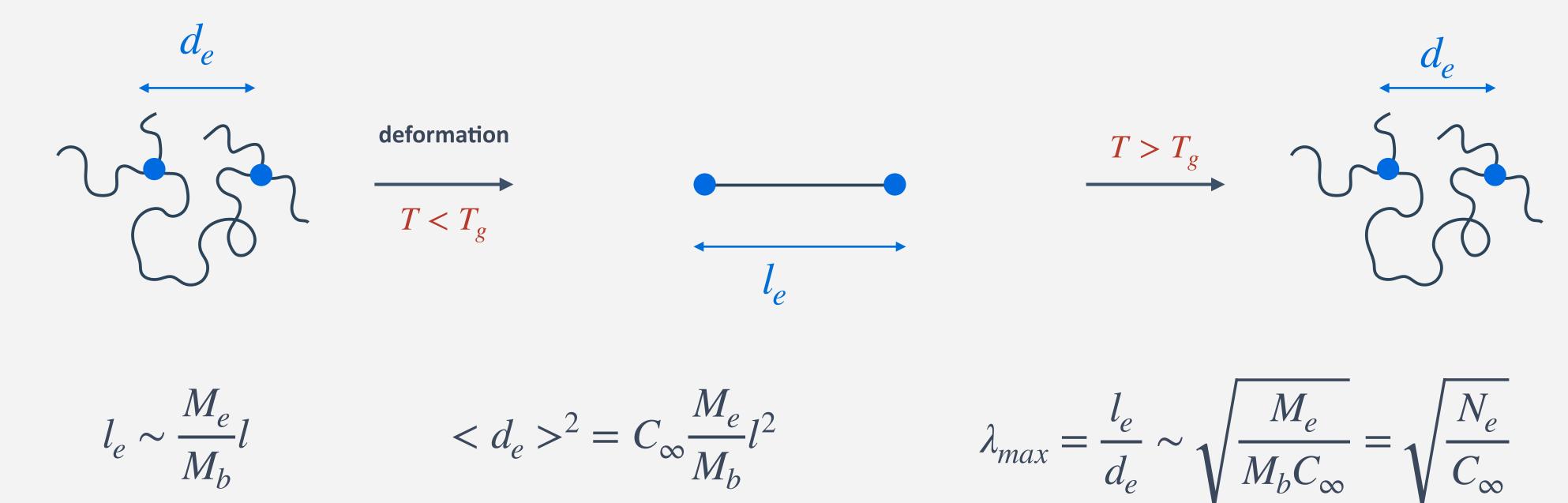
thus, for the yield point: $\frac{d\sigma_n}{d\lambda} = 0 \implies \frac{d\sigma_r}{d\lambda} = \frac{\sigma_r}{\lambda}$



- ullet the slope of the true stress-strain curve decreases monotonically with λ , and σ_r becomes constant
- therefore, σ_n decreases: a purely geometric instability ($d\sigma_n/d\lambda < 0$) compensated for by necking

Role of Entanglements for λ_c

ullet excellent correlation between λ_c and the maximum extension, λ_{max} , of an entangled network



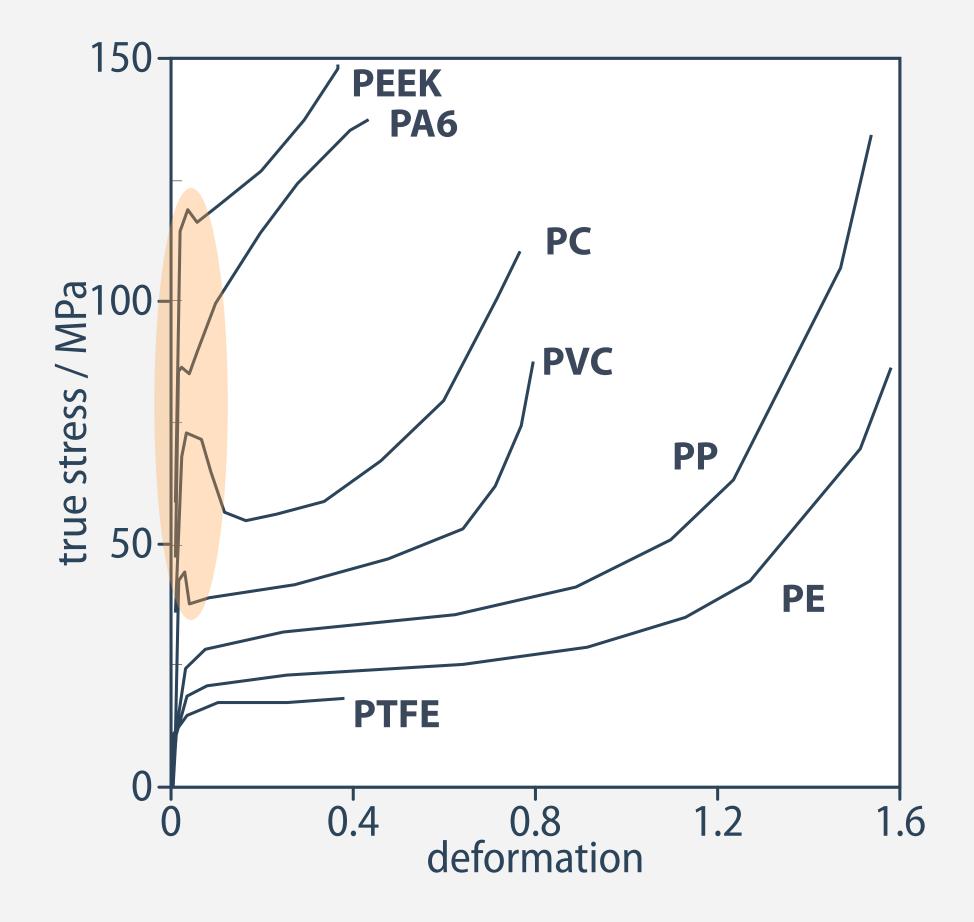
 M_b : molar mass per constitutive repeating unit l:

l: bond length

- the plastic deformation is therefore stabilised by entanglement, particularly for glassy polymers.
- ullet in the rubbery state (above T_g), even large deformations are reversible as long as no disentanglement takes place.
- for $M < 2M_{\scriptscriptstyle \rho}$, plastic deformation is no longer stabilised (\Rightarrow brittle behavior)

Physical Aging as Origin of Yield Drop

• true stress-strain curves of common ductile polymers at 25 °C tested under tension:

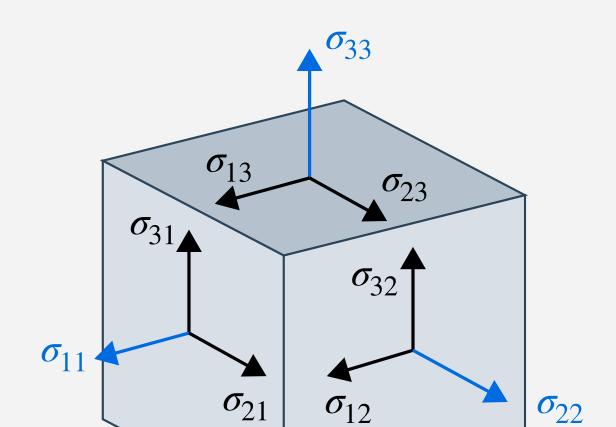


• the intrinsic yield drop observed for glassy polymers is due to physical ageing

(more pronounced after heat treatment at a few K below T_{g})

Von Mises Yield Criterion

ullet assumption: deformation via shear characterised by normal stresses σ_1 , σ_2 , σ_3

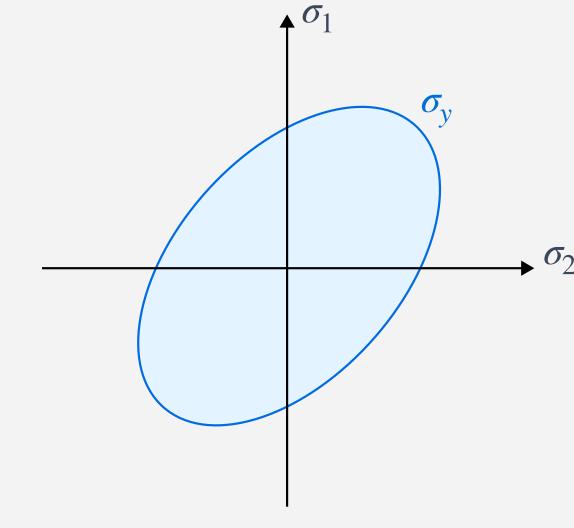


stress tensor

$$\sigma_{ij} = \begin{pmatrix} \sigma_{11} & \sigma_{21} & \sigma_{31} \\ \sigma_{12} & \sigma_{22} & \sigma_{32} \\ \sigma_{13} & \sigma_{23} & \sigma_{33} \end{pmatrix}$$

$$\equiv \left(\begin{array}{ccc} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \end{array}\right)$$

biaxial stretching



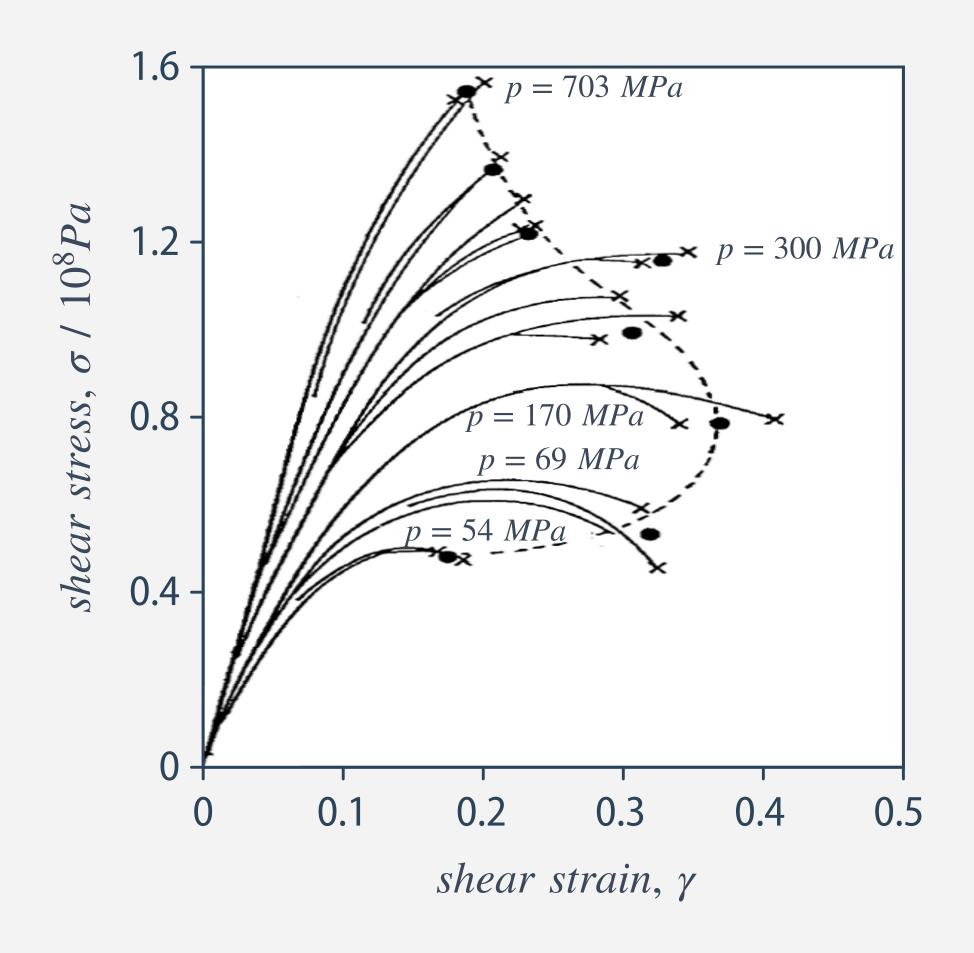
Von Mises criterion:
$$(\sigma_{11} - \sigma_{22})^2 + (\sigma_{22} - \sigma_{33})^2 + (\sigma_{33} - \sigma_{11})^2 + 6(\sigma_{12}^2 + \sigma_{13}^2 + \sigma_{23}^2) \ge 2\sigma_y^2$$

for uniaxial stretching: $2\sigma_{11}^2 \ge 2\sigma_y^2$

- ullet in metals, $\sigma_{\!\scriptscriptstyle V}$ is approximately constant and the von Mises criterion applies
- ullet in polymers, $\sigma_{\!\scriptscriptstyle V}$ varies with hydrostatic pressure (at constant T and $d\varepsilon/dt$)

Influence of Pressure on Yield Strength

• pressure effect on tensile curves of PMMA:



hydrostatic pressure:

$$p = -\frac{1}{3}(\sigma_1 + \sigma_2 + \sigma_3)$$

assumption of a linear dependence:

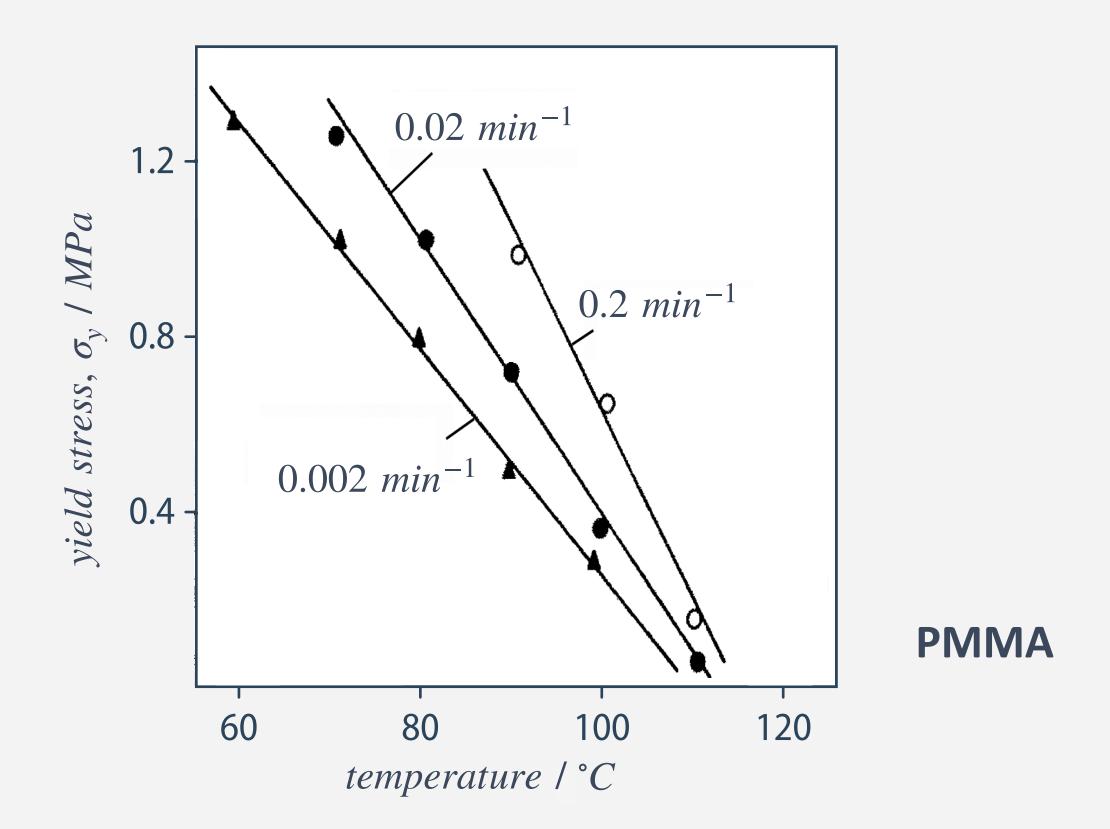
$$\sigma_{y} = \sigma_{y0} + \mu p$$

ullet significant volume changes upon pressurisation (much lower K than for metals)

Models

Effect of Temperature and Strain Rate

- plasticity can be thermally activated
- ullet $\sigma_{\!\scriptscriptstyle V}$ becomes approximately zero as the glass transition temperature is approached

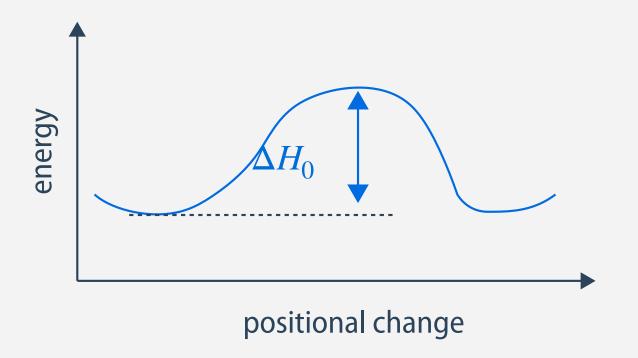


• like viscoelasticity, plasticity is strongly influenced by temperature and strain rate

Eyring Model

ullet description of translational movement by an activation barrier ΔH , that is reduced for segments moving into the direction of an applied stress

undeformed

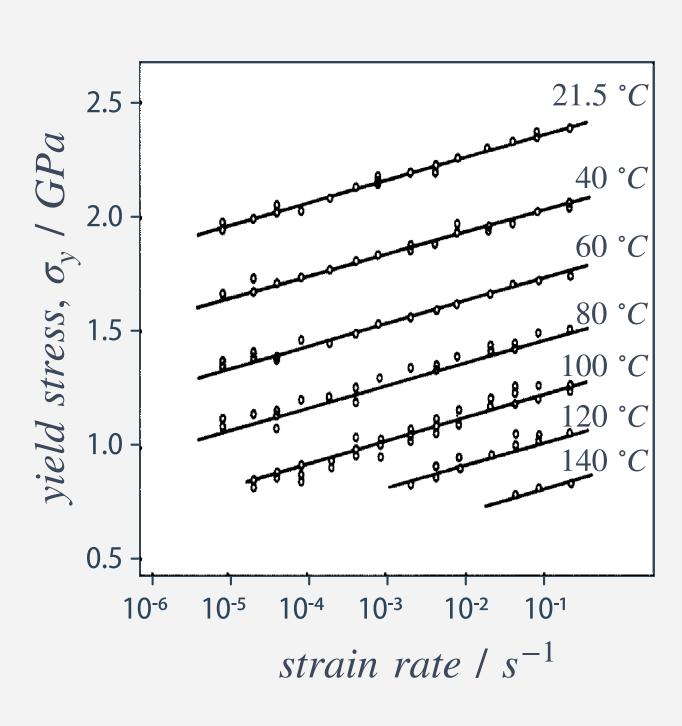


$$\dot{\epsilon} = \dot{\epsilon}_0 e^{-\frac{\Delta H - \sigma V^*}{kT}}$$

deformed

$$\sigma_{y} = \frac{\Delta H}{V^{*}} + \frac{kT}{V^{*}} ln \frac{\dot{\epsilon}}{\dot{\epsilon}_{0}}$$

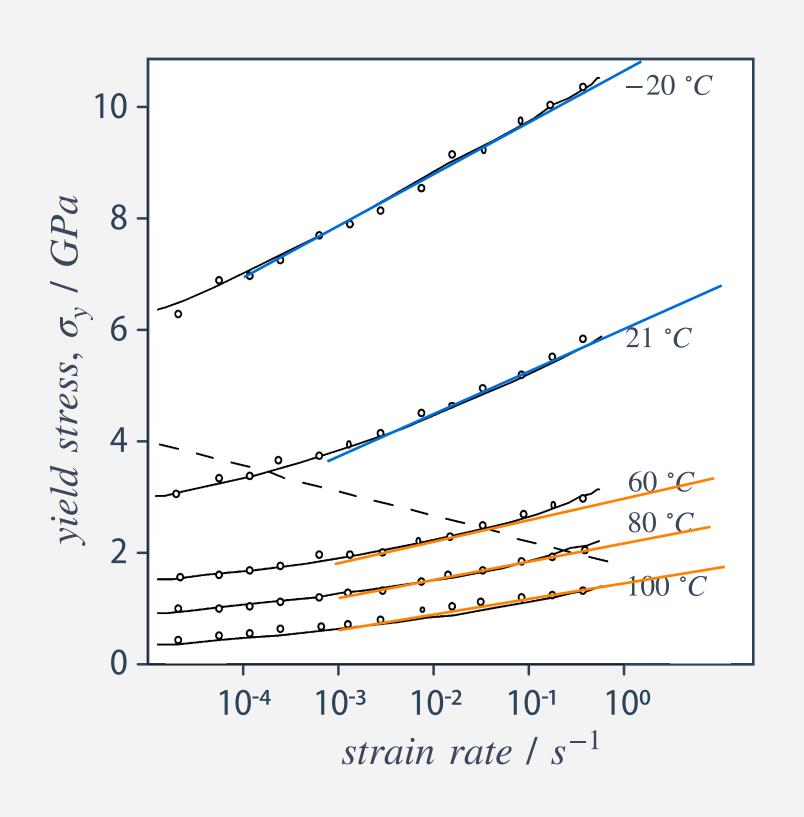
example: PC



• segments from multiple monomers (typically between 2 and 10 for most glassy polymers) are involved in plastic deformation ($V^* \approx 6.4~nm^3$ for PC)

Influence of Secondary Transitions

- $\bullet\,$ in PC, there is no major secondary relaxation between 20 °C and T_g
- ullet in contrast, PVC displays a strong eta-relaxation at around 50 °C



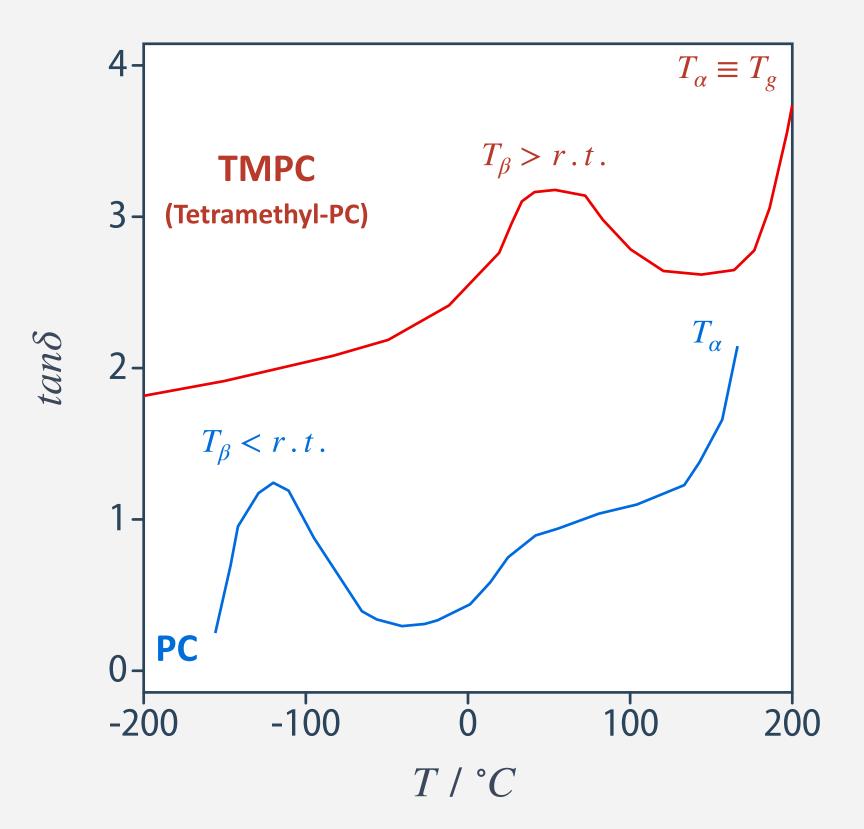
example: PVC

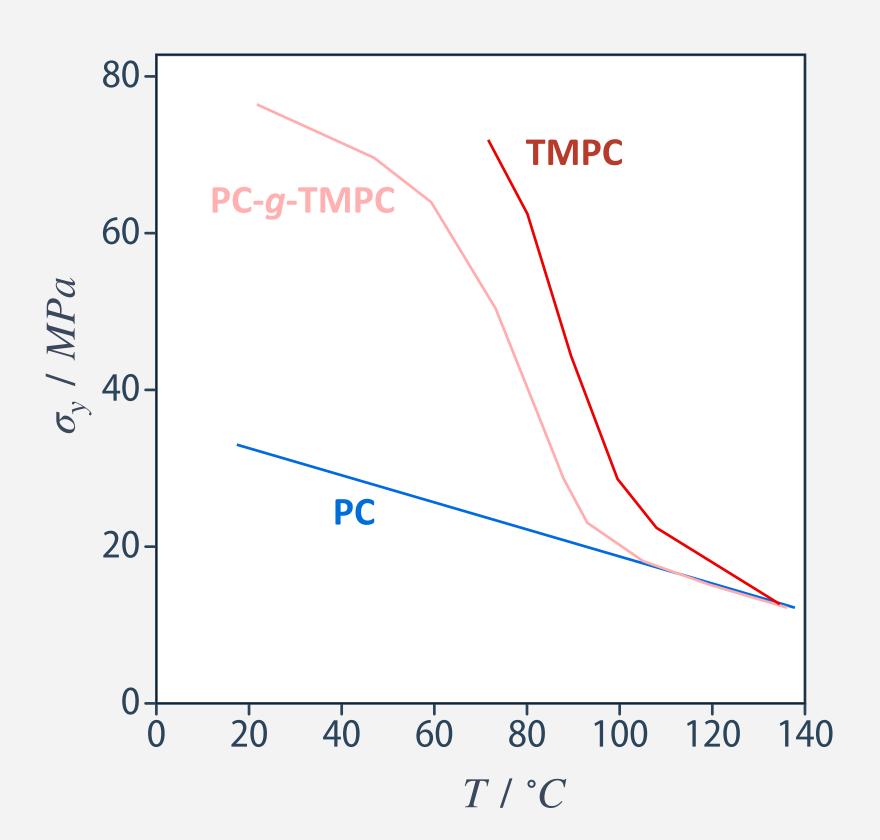
pronounced change in slopes at around 50 °C.

ullet conformational relaxation involving a limited number of bonds can subsist below T_g

Influence of Secondary Transitions

ullet polymer conformations are not entirely frozen below T_g , but can occur on a highly local level, thus accounting for ductile behavior as compared to inorganic glasses

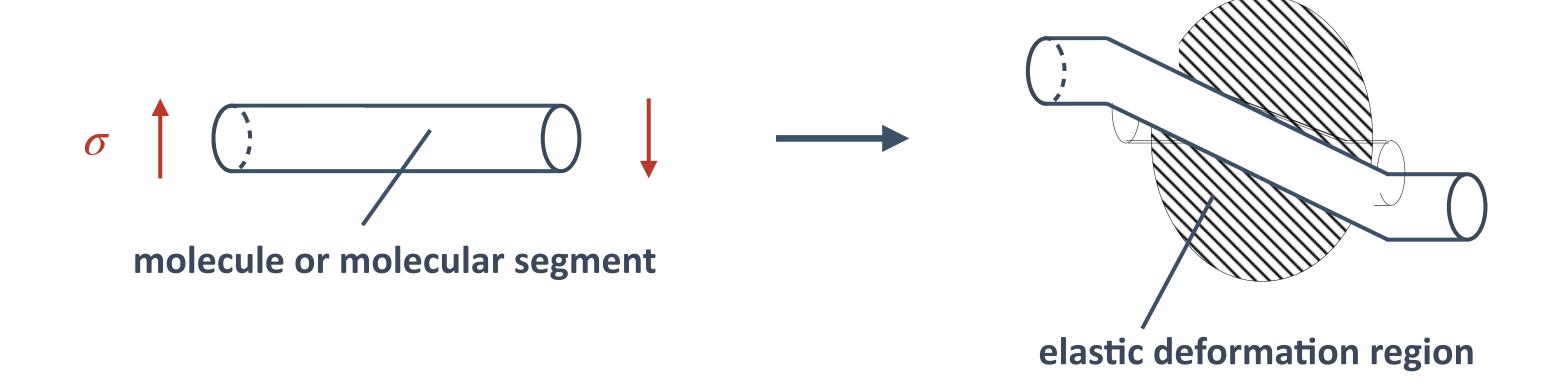




• the activation of movements corresponding to secondary transitions facilitates plastic deformation ("lubricating" effect)

Argon Model

• formally similar to the Eyring model - an intermolecular interpretation of the energy barrier:



$$\sigma_{y} = \sigma_{0} \left[1 + \frac{16(a-v)}{3\pi G\beta^{2}\alpha^{3}} kT ln\left(\frac{\dot{\gamma}}{\dot{\gamma}_{0}}\right) \right]^{6/5}$$

- ullet G is the shear modulus of the "matrix" which surrounds the deformed "molecule".
- "elastic energy" is required to accommodate that deformation in the matrix.

Robertson Model

• intramolecular barriers for transition between "trans" (low energy) and "cis" (high energy) states

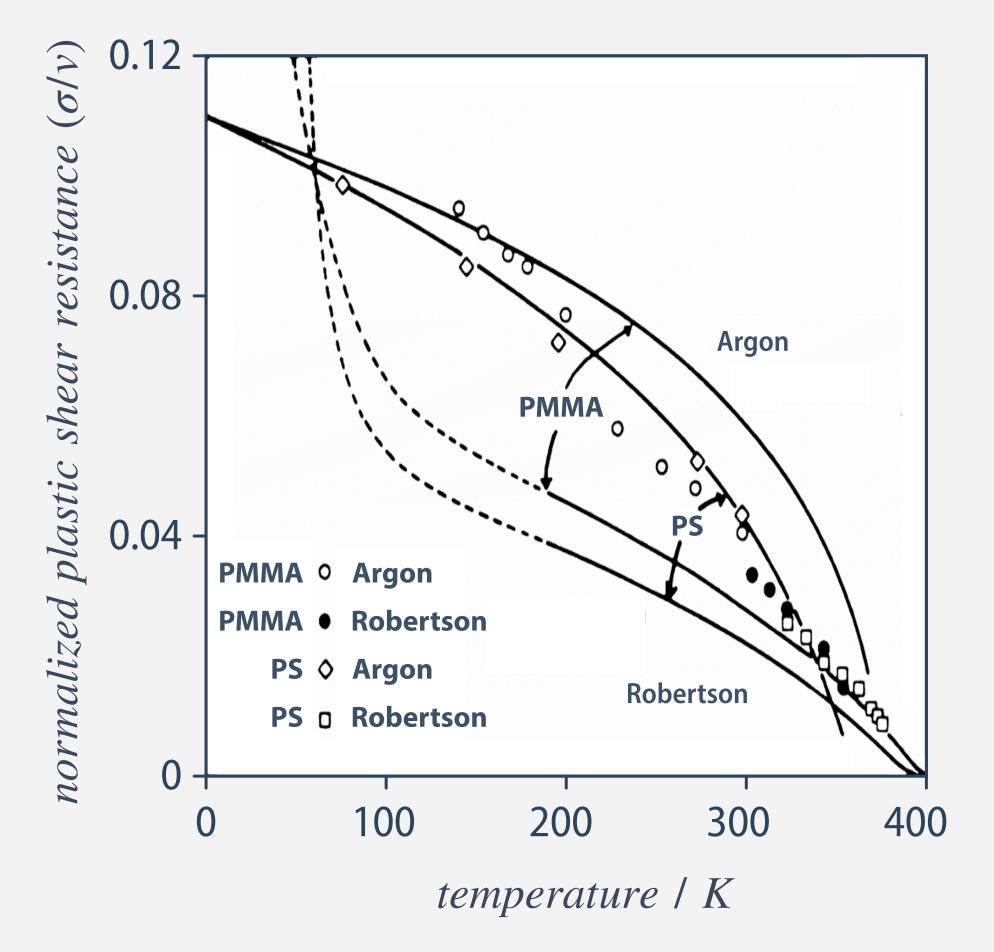
- ullet without stress, the proportion χ of *cis* states depends on the temperature
- at sufficiently high stress, the proportion of *cis* states is comparable to that in the liquid state and allows us to put stress ($T < T_g$) and viscosity ($T > T_g$) into relation:

$$\sigma = \eta \dot{\epsilon}$$

• the viscosity can be determined by the WLF approach

Comparison of Argon and Robertson with Experimental Data

• both models do not work over the full temperature range: Argon better describes low temperature behavior ($T\ll T_g$), Robertson the behavior close to T_g



• limitations: Secondary relaxation is not taken into account.

Molecular Dynamics

• there are many other phenomenological and theoretical models, which more or less account for the data (often depending on the number of adjustable parameters!)

• another class of models is based on numerical simulations of molecular dynamics (in particular by Suter and collaborators at ETHZ - see: vitreous state model)

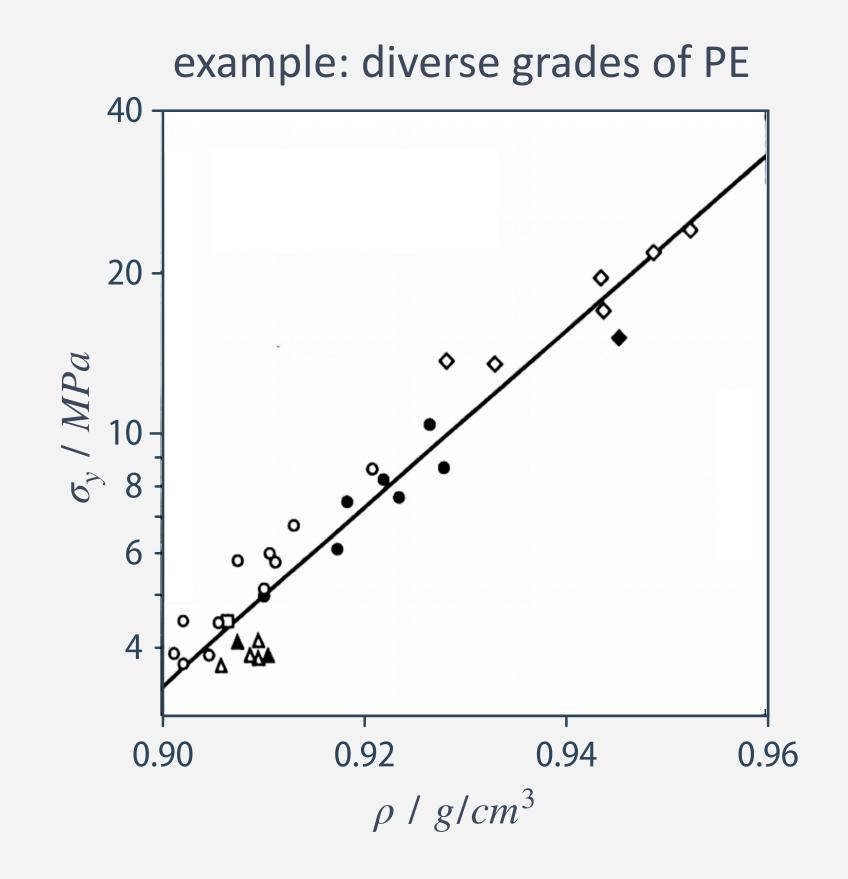
• limited by the IT resources available, i.e. to low volumes (small number of segments) and short times (picoseconds). Promising nonetheless...

Semicrystalline Polymers

Yield Strength in Semicrystalline Polymers

 macroscopic behavior similar to glassy polymer, but differences are particularly observed at temperatures above the glass transition temperature.

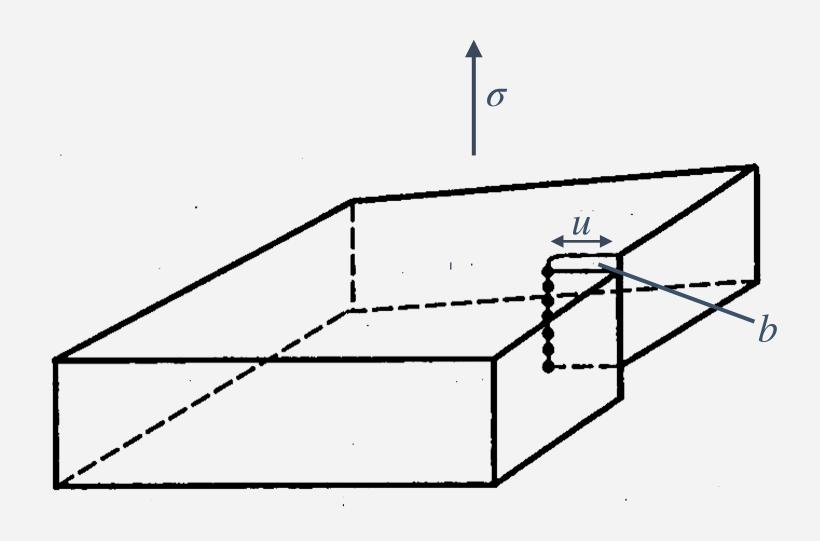
- $ullet \sigma_{\!\scriptscriptstyle V}$ increases with lamellar thickness l .
- $\bullet \sigma_{\rm v}$ increases with degree of crystallinity.
- $\bullet \sigma_{\rm v}$ increases, hence, with density.



• yield strength depends on morphological features (lamellar thickness and degree of crystallinity)

Young's Model Based on Dislocations

- a relation between yield stress and lamellar thickness is given by Young's model.
- nucleation of dislocations and crystallographic slip as origin of plasticity.



activation energy for screw dislocations:

$$\Delta U^* = \frac{Gb^2l}{2\pi} \left(ln \frac{u^*}{r_0} - 1 \right)$$

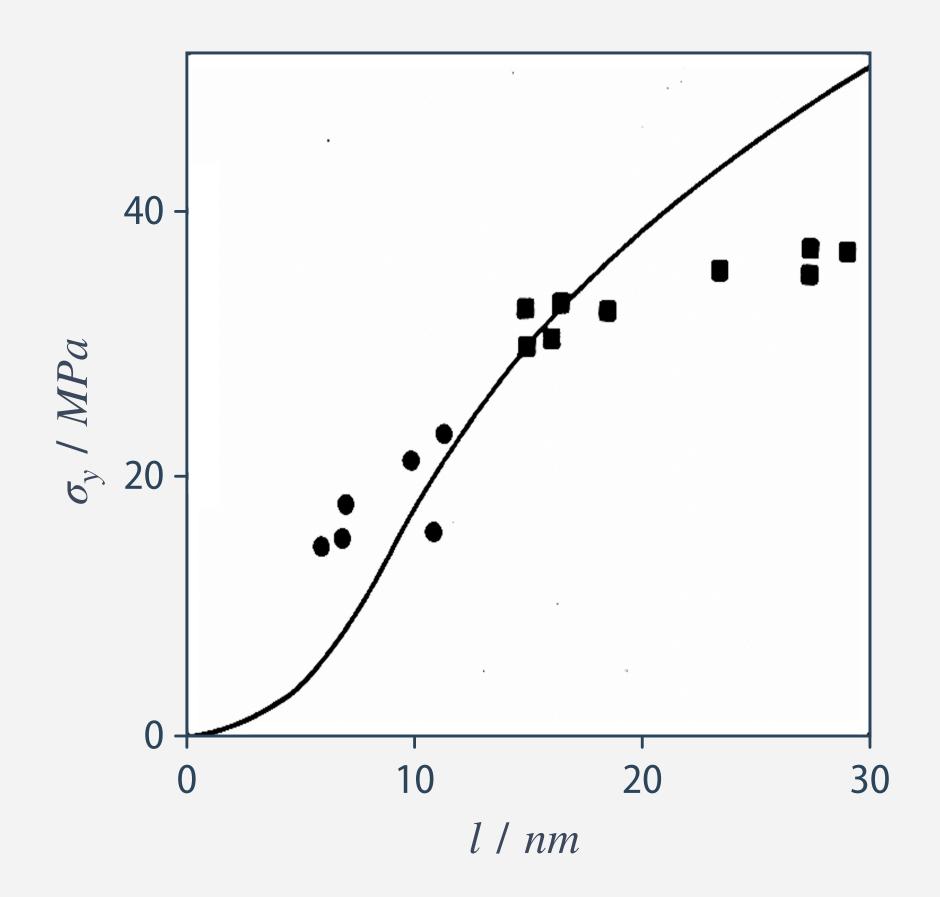
critical width:

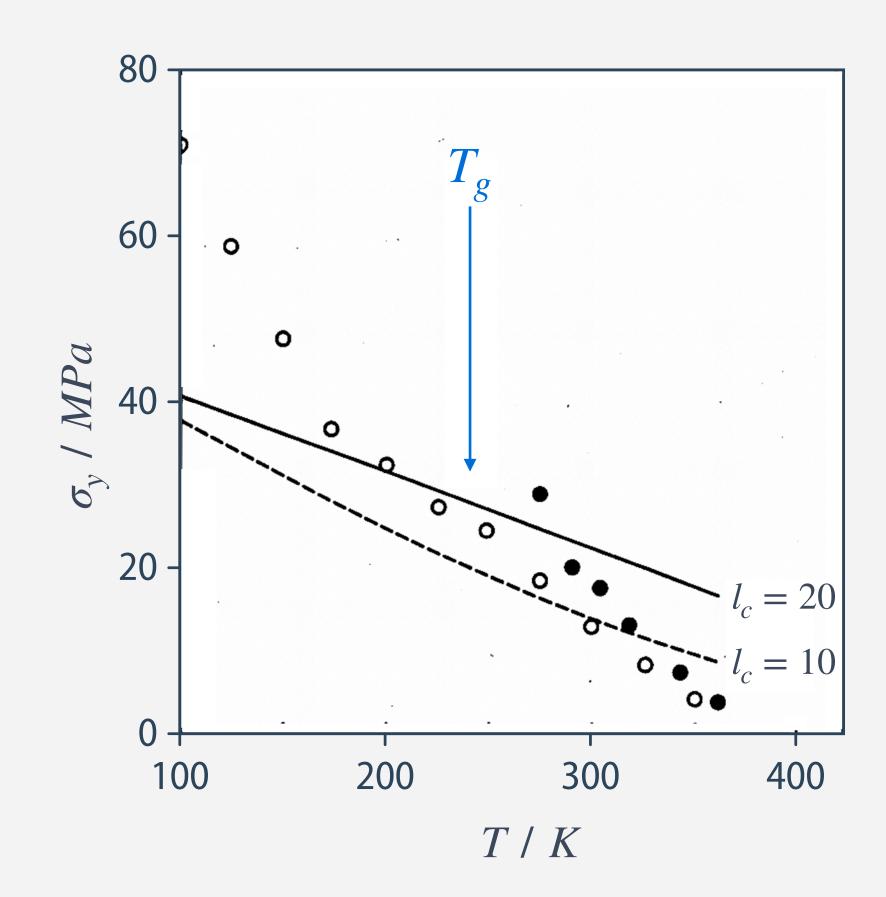
$$u^* = \frac{Gb}{2\pi\sigma}$$

• for HDPE: $\Delta U^* \sim 50-60~kT$ required to nucleate a dislocation

Young's Model and Experiments

• qualitatively good correlations, correct order of magnitude, but severe limitations:

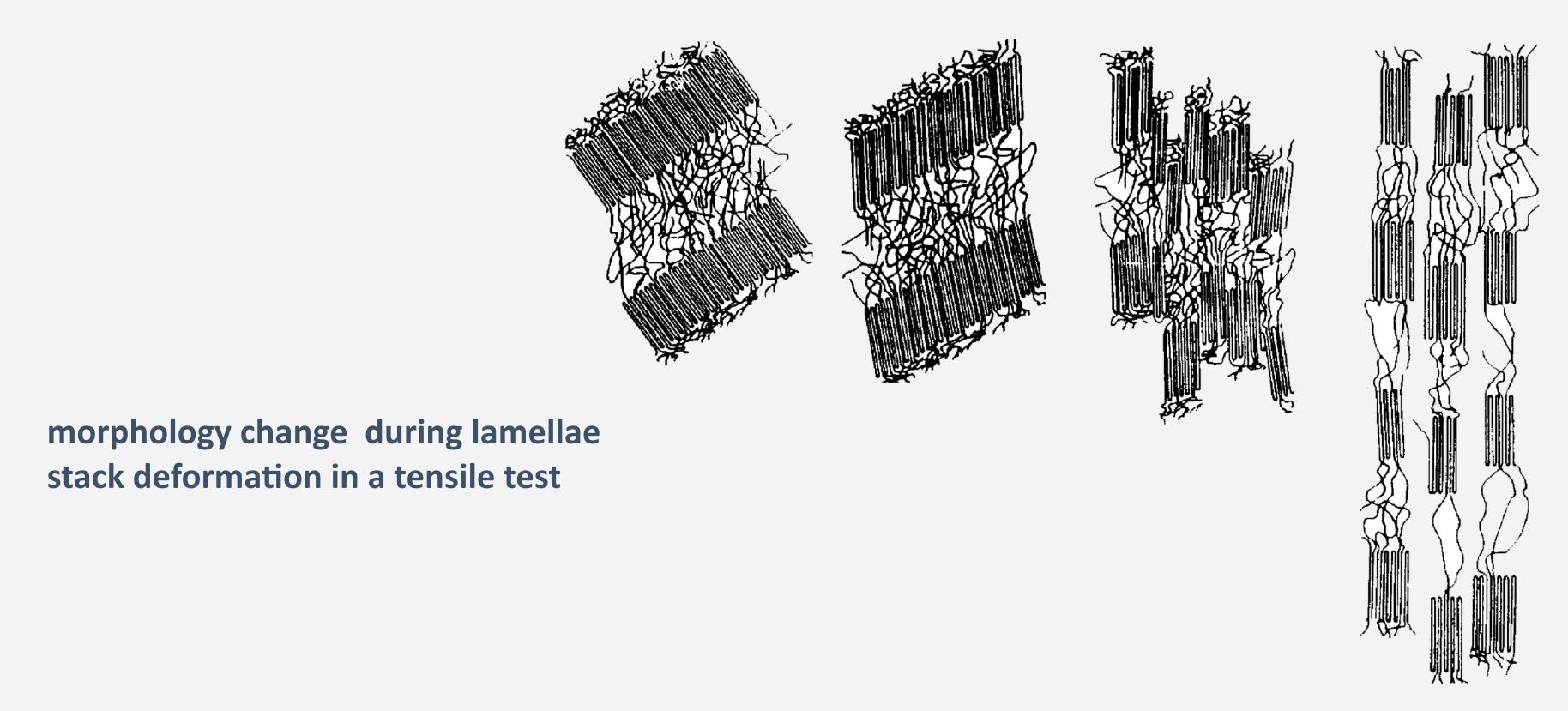




 $\bullet\,$ role of amorphous regions ignored, which is particularly unrealistic for $T < T_g$

Self-Consistent Models

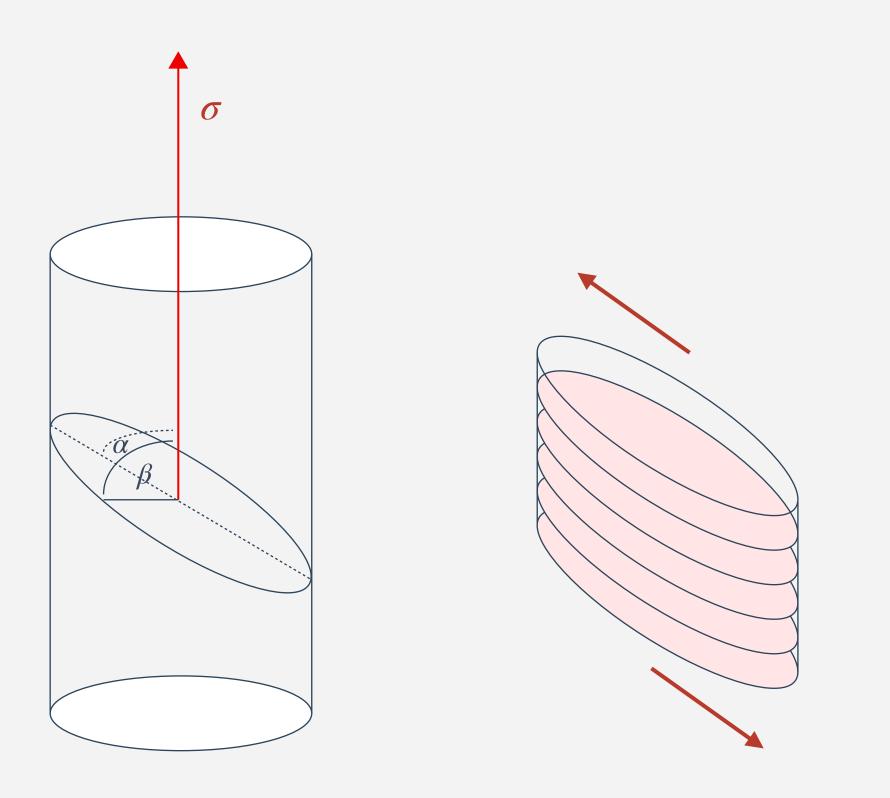
- marked changes in crystallographic texture and morphology upon plastic deformation
- self-consistent models follow the evolution of the crystallographic texture of the material beyond the yield point.



• complexity arises from: multi-stage processes involving both amorphous and crystalline regions, polycrystallinity, possibility of several sliding systems, ...

Large Deformations

- at large deformations, major rearrangement of the crystal structure.
- self-reinforcement: chain axes oriented parallel to the pulling direction.



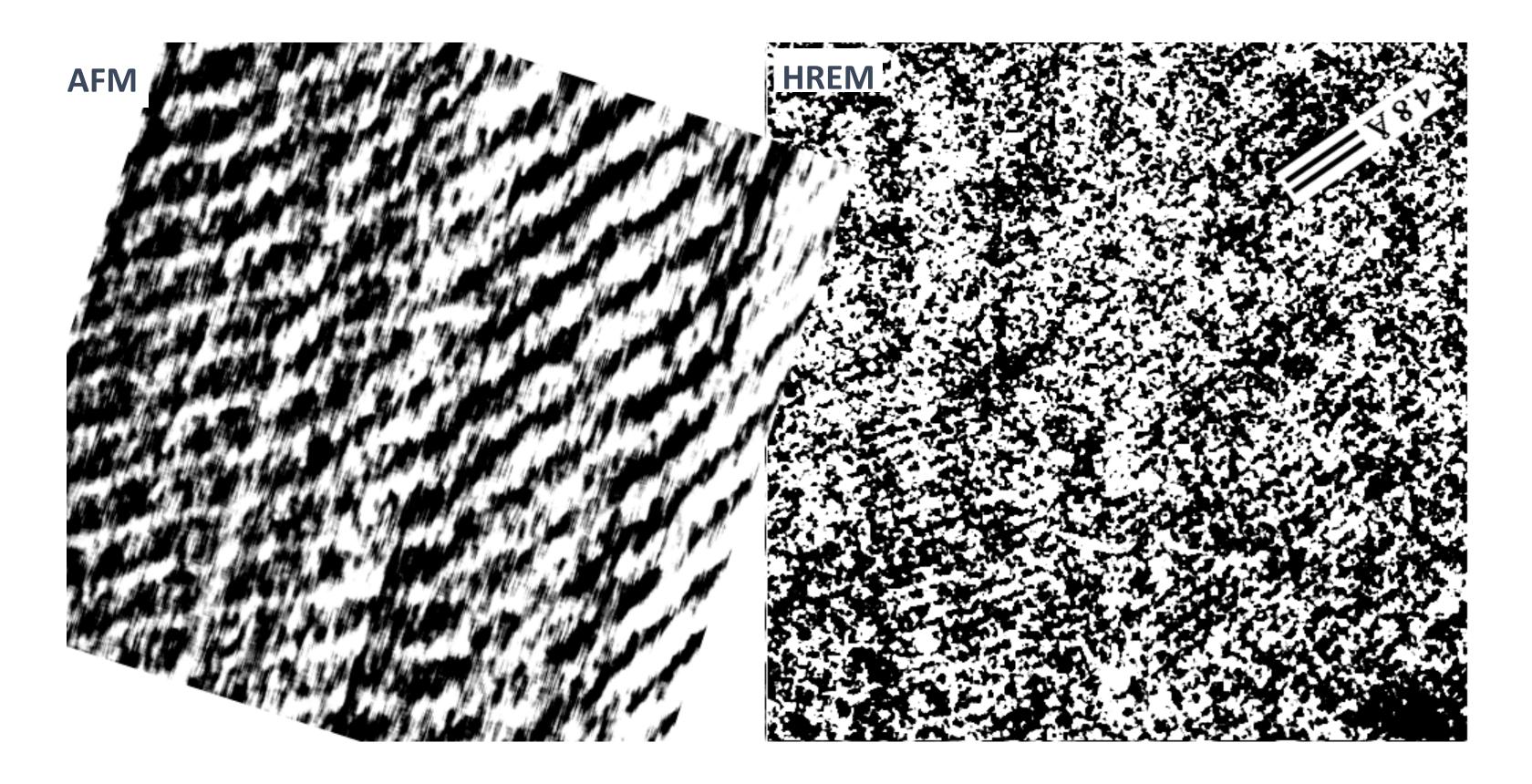
shear stress on the slip plane parallel to the slip direction:

$$\tau = \sigma_{y} cos(\beta) cos(\alpha)$$

• in addition to entanglement effects, strain hardening of crystallographic origin

Oriented Polymers

- at very large deformations, total rearrangement of the crystal structure
- parallel oriented chains, little or no active sliding



- oriented polymers can show significant plasticity in compression (i.e. by twinning).
- thus, higher impact resistance of polymer fibers compared to glass or carbon fibers

Learning Outcome

• yielding usually defined as the point where the slope of the stress-strain curve becomes zero during the deformation of glassy or semicrystalline polymers. This often results in the formation of a stable neck at a given draw ratio which is a materials parameter, characteristic of the entanglement network.

• the yield strength decreases roughly linearly with T and decreasing deformation rate under certain conditions, in accordance with the simple Eyring rate theory. However, the yield behavior is also strongly influenced by the presence of sub- T_g relaxations, in some cases providing a link between yielding and molecular structure.

ullet semicrystalline polymers modelled in terms of crystallographic slip for $T>T_g$. For a constant degree of crystallinity, σ_y increases with lamellar thickness l. Thus, in general, polymers crystallised at higher temperatures have higher yield stresses.